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ABSTRACT 

A class of differential pursuit-evasion games is examined in 

which the dynamics a re  linear and perturbed by additive white 

Gaussian noise, the performance index is quadratic, and both players 

receive measurements perturbed independently by additive white 

Gaussian noise. A direct application of the saddle point condition is 

used formally to characterize linear minimax solutions in terms of a 

system of implicit integro-differential equations, which appears to be 

more complicated than the ordinary kind of two point boundary value 

problem. It is also shown that games of this type possess a "certainty- 

coincidence" property, meaning that their behavior coincides with that 

of corresponding deterministic games in the event that all noise values 

a re  zero. This property is used to decompose the minimax strategies 

into sums of a certainty-equivalent term and e r ro r  terms. 



1. BACKGROUND 

The theory of two-person zero-sum differential games was first 

developed by Isaacs in 1954 [ 11, who used game-theoretic concepts 

originated earlier by von Neumann and Morgenstern [ 21 together with 

the properties of dynamic systems to produce results of computational 

interest. A convenient summary of this theory is contained in his book 

[ 31. In 1957, Berkowitz and Fleming [ 41 used variational techniques to 

investigate a restricted class of differential games, a class later 

expanded by Berkowitz [5]. 

A more thorough examination of linear- quadratic pursuit-evasion 

games was made in 1965 by Ho, Bryson, and Baron [6], who showed 

that a linear control law is optimal for both players in this type of 

game. A natural extension of this game is obtained by assuming that 

the players have imperfect information to the extent that they must act 

on the basis of measurements which a r e  linear functions of the state 

corrupted by additive white noise. An important subclass of such 

games, including the classical interception problem, was solved by 

Behn and Ho [7] in 1968 for the case in which one player has access to 

perfect information about the state of the game. A linear control law 

is optimal for both players in this situation as well, the player with 

noisy measurements using a certainty-equivalent control, and his 

opponent adding a te rm to his certainty-equivalent control proportional 

to the first player's e r ror .  A s  a result, assuming that the optimal 
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control laws are  used in both cases, the time behavior of the state 

variable coincides with that of the corre sponding deterministic game 

if the player with noisy measurements happens to receive correct 

measurements and begins with the correct estimate of the initial state. 

Some interesting results in the area of stochastic differential games 

a r e  also being developed by Rhodes and Luenberger [ 81. 

The game of interest here is an extension of the linear-quadratic 

pursuit-evasion game in which both the pursuer and evader have 

access only to noisy measurements and in which process noise is 

added to the dynamics. The main difficulty in making this extension 

stems from the fact that each player has only imperfect knowledge of 

the information available to his opponent. The optimal control laws in 

this context a r e  again found to be linear functionals of the players' 

available measurements, but as  an apparent consequence of this im- 

perfect knowledge, attempts to express these control laws in terms of 

finite-dimensional "estimate vectors" (i. e. ,  summary statistics of the 

measurements) have been unsuccessful. An additional complication is 

that the solution to such a game is expressed implicitly in terms of a 

set of differential equations which is more complicated than the 

standard type of two point boundary value problem. 

It is possible, however, to show that the optimal control laws 

for this class of games consist of a certainty-equivalent term plus two 

e r ro r  terms, both of which a re  zero in the event that both players' 

estimates of the state a re  initially correct and all measurement and 

process noise values happen to be zero. This means that the trajectory 

followed by the stochastic differential game under these circumstances 
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coincides with that followed by the corresponding deterministic game , 

i f  the optimal control laws a r e  used in both cases. Thus, a "certainty- 

coincidence" property, which holds for the class of games considered 

by Behn and Ho [7] , extends to this case as well. 

The approach adopted here is basically formal, but hopefully is 

indicative of how a mathematically more substantial development of 

this topic might proceed in a sufficiently broad context to be of interest. 
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2. PROBLEM STATEMENT 

A. A Deterministic Game 

Considerable attention has focused on pursuit-evasion games 

with linear dynamics and quadratic payoff, both because much is known 

about their solutions and because they arise naturally in the pertur- 

bation analysis of a more general class of differential games. The 

specific type of game considered here is a two-person one in which an 

n-dimensional state vector (of real  numbers) x obeys the transition 

equation 

X = G  U -  Gev ; x(0) given (1) P 

and the payoff, which one player (the pursuer) wishes to minimize and 

the other player (the evader) wishes to maximize, is the quadratic 

functional 

J = $[xT(tf)Sfx(tf) + Jtf ( ~ ~ l 3 u - v  
0 

where tf is some prescribed terminal time, and the initial time is 

taken to be zero without loss of generality. The m-dimensional vector 

u(t) is the control chosen by the pursuer at time t and v(t) is the k- 

dimensional control vector chosen by the evader at that time. Gp, Ge, 

B, and C a re  time-varying matrices of the required dimensions, and 

B and C a re  symmetric and positive definite. The matrix Sf is sym- 

metric and positive semidefinite. It is also assumed that both players 

know all the parameters which define the game. It has been shown by 
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Ho, Bryson, and Baron [SI that a seemingly more general class of 

linear games can be reduced to this form by using the concepts of 

reduced state and predicted terminal miss. 

A solution to such a game, and also to two-person zero-sum 

games in general, is a pair of control laws, o r  strategies, for the two 

players which is optimal in a sense to  be defined shortly. By a 

strategy is meant a decision rule that specifies the control to be used 

by a player, as  a function of the information available to him, in any 

situation that might arise.  Therefore, a complete description of a 

game must include the information sets available to each player upon 

which his control decisions must be based. To avoid confusion, 

strategies will  be labelled by capital letters to distinguish them from 

the control values that they determine. 

A pair of strategies for the two players (Uo, Vo) is called opti- 

mal, o r  minimax, i f  it satisfies the saddle-point condition, which 

means that for any strategy pair (U, V) based on the available infor- 

mation set, 

J(U,Vo) 3 J(Uo,Vo) >, J(Uo,V).  (3)  

That is, each strategy of a minimax pair optimizes against the other. 

Such a minimax strategy pair is defined to be a solution of the game. 

It may be that there is more than one minimax pair of strategies. 

If this happens, say for the pairs (Uo, Vo) and U , V ), the saddle point 

condition can be applied twice to obtain 

1 1  

J(Uo,V1) S J(Uo,Vo) G J(U ' . v  4 J(U1,V1) G J(Uo,V1). 

(4) 
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Therefore, since all these values must be the same, the same payoff 

is obtained i f  either of these pursuit strategies is played against 

either of the evasion strategies. For this reason, it makes sense to 

apply the term "minimax" to strategies as well a s  strategy pairs, since 

it is equivalent to say that Uo is a minimax strategy if there exists an 

evasion strategy Vo such that the pair (Uo, Vo) is minimax in the sense 

defined earlier. Strictly speaking, it may happen in. some games that 

some combination of pursuit and evasion strategies results in a 

meaningless situation , whereas another combination of the same 

strategies is meaningful, in which case the preceding reasoning does 

not apply. In the type of game under consideration here, however, the 

controls a r e  combined additively, and this problem does not arise.  

The definition of solution is also sometimes extended to include 

randomly mixed strategies, but these will not be considered here. 

The solution (i. e . ,  the minimax strategies) to the linear- 

quadratic game posed earlier has been found by Ho, Bryson, and 

Baron [6] for  the case where both players have perfect knowledge of 

the state x. When a solution exists, it is given by 

-1 T 
P 

Uo: u = - B  G SX 

Vo: v = -C-'G:Sx 

where S is the solution to the matrix Riccati equation 

B-'G;f - G  e C-'G:]S, S(tf) = Sf .  

A solution to the game does not exist i f  S becomes infinite on the 

(7) 

interval (0, tf) as  the differential equation is integrated backwards 
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from tf. If the solution is bounded on [0, tf], then the strategies Uo 

and V a re  minimax. 0 

B. An Effect of Imperfect Information 

It is also well known that i f  the players' information sets in this 

game a re  changed so that they both know the initial state exactly but 

have no direct knowledge of subsequent values of the state vector, the 

minimax control laws,  if they exist, a r e  given by 

( 8 )  
1 -1 T U : u = - B  GpSy 

and 
1 -1 T V : v = - C  GeSy (9) 

where S is the same as  before, and y is determined by the differ- 

ential equation 
r 1 

Notice that, although the control variable and state variable histories 

a re  the same in both cases when the minimax strategies a r e  played 

(another example of the certainty-coincidence property) , the strategies 

U 

closed-loop (functions of both x and t). There are ,  however, condi- 

tions under which a solution exists for  the closed-loop problem, but 

not the open-loop problem. In fact, a solution to the open-loop game 

exists only when the solution to the differential equation 

1 1 and V a re  open-loop (functions of t only), whereas Uo and Vo a re  

-1 T K = -KGeC Ge K ; K(tf) = Sf 

remains finite on the interval [O, tf]. An intuitive explanation for this 



-9-  

phenomenon is that it is easier for the evader to escape under the open- 

loop conditions because the lack of information hurts the pursuer more 

than the evader: 

C .  A Related Stochastic Game 

A type of game intermediate between these open-loop and closed- 

loop extremes can be formulated by altering the players' information 

sets so that they each have access to noisy measurements of the state, 

by including process noise in the transition equation, and by modifying 

the criterion J to be the prior expected value of the payoff. Specifi- 

cally, the generic game of interest here is that in which the transition 

equation is 

X = G  U - G , V + C ,  (11) P 

the criterion to be minimaximized is 

(tf)Sfx(tf) + f f  (12) 
0 

and the measurements available to the pursuer and evader are,  

r e  s p e c t ively , 

and 

z = H x + w  
P P  P 

z e = H e x +  we , 

where z 

time-varying matrices, and 

and ze a r e  q- and r-dimensional vectors, H 
P P 

and He a re  
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[ ~~1 is a Gaussian white noise 

It is also assumed that both players start  with a common prior proba- 

bility assessment of the initial state which is Normal (2 Po) and 

statistically independent of the measurement and process noises. 

Notice that the expected value operator in equation (12) is unambiguous 

since both players have the same prior assessment of the initial state. 

0' 

The assumption that both players know the parameters of the 

game must in this context be extended to include knowledge of the sta- 

tistical parameters a s  well. In particular, this includes their 

opponents' prior estimates of the initial state, a knowledge of which 

would be available in a situation where the initial state is determined 

by an outside random event whose statistics a r e  known to both players. 

The dynamics of this stochastic differential game are  illustrated 

in Figure 1. 



Zp(X)&{(Zp(S),S) OSSS t } '  # Z,(t)& ((Z&),s): os S I  t }  

FIG. 1 G A M E  DYNAMICS 
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3.  DERIVATION OUTLINE 

A. The Basic Method 

The method used here to solve the stochastic game is based on 

the fact that the saddle point condition for a minimax strategy pair 

(UO, VO) : 

J(U,Vo) 3 J(Uo,Vo) >, J (Uo,V)  

characterizes these strategies in terms of a pair of associated 

stochastic optimal control problems. That is, the saddle point 

condition is equivalent to Uo being a solution to the stochastic optimal 

control problem 

JWO, vO) = min J(U, vO) (15) 
U 

I_ and Vo being a solution to 

J(U', vO) = max J(uO, V) . 
V 

This equivalence is used to characterize minimax strategies as follows: 

(i) 

(ii) 

(iii) 

Guess the functional form of a pair of minimax strategies. 

Substituting the assumed form of the evader's minimax 

strategy into the transition and criterion equations, solve 

the resulting stochastic optimal control problem for the 

pursuer in  terms of the parameters of the strategy assumed 

for the evader. 

Repeat step (ii) with the roles of the pursuer and evader 

inter changed. 
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(iv) Obtain conditions on the parameters under which the assumed 

pair of strategies is minimax by requiring that the results of 

the optimizations of steps (ii) and (iii) be consistent with the 

strategies guessed in step (i). 

The success of this method clearly depends on making a good guess in 

step (i), s o  that the results of steps (ii) and (iii) have the same 

functional form as  the strategies originally assumed. The following 

simple example, which can be considered a one-stage game, illus- 

t ra tes  the application of this method. 

Examtde 

y = x + u - v  (transition equation) 
~ = ~ E [ a y ~ + u  1 2 -cv  2 I ,  c > a > ~  (criterion) 

z = x + w  (pursuer' s measurement) 

z = x + w e  (evader's measurement) 
P P 

e 

common p r io r  is Normal(0, p) 

Step 1 

Assume there exists a minimax strategy pair of the form 

Uo: u = b z  (pursuit strategy) 

Vo : v = dz (evasion strategy) 
P 

e 

Step 2 

If the evader uses the generic strategy assumed in step 1, the 

associated optimal control problem facing the pursuer is described by 



- 1  5- 

( z p = x + w  P 

This is an example of the classical "linear-quadratic-Gaussian" control 

problem, the solution to which is well known. Expressing the solution 

as  a function of z gives 
P 

Step 3 

An analogous argument shows that the maximizing evasion 

strategy against the assumed pursuit strategy is 

Step 4 

Straightforward substitution shows that the results of steps 2 and 

3 are  consistent with the strategies assumed in step 1 (i. e., the values 

of u and v a re  the same for almost all values of z and ze) i f  
P 

ap[b+l)(p+q) + "PI 

(a+l)(c-a)(p+q)(p+r) + a p 2 2  

Therefore, i f  b and d satisfy these equations, the strategies assumed 

in step 1 a re  minimax because they satisfy the saddle point condition 

by construction (steps 2 and 3). End of example. 
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Since white noise processes do not really exist except as  a kind 

of shorthand notation for a sequence of successively better approxi- 

mating step-function processes , it is misleading and unreasonable to 

treat  them formally as  ordinary random processes. For this reason, 

a direct application of the preceding method to a continuous-time 

stochastic game requires the use of mathematical concepts beyond the 

scope of this report. Accordingly, an approach is adopted here in 

which the solution to the game of interest is obtained in  three basic 

stages. Firs t ,  the multi-stage analogue of the stochastic differential 

game described in the previous section is solved by the method out- 

lined above. The (linear) solution is characterized by a system of 

implicit difference equations. Next, this solution is used to  obtain a 

first order approximation of the solution to a discretized version of 

the differential game for small discretization intervals. Finally, the 

asymptotic form of such solutions is found in the limit as  the dis- 

cretization interval becomes infinitesimal. This limiting form of the 

solutions to successively finer discretizations of the differential game 

is taken to be the solution to this differential game. Here, the implicit 

difference equations become a system of implicit integro-differential 

equations with sp l i t  boundary conditions. This approach implicitly 

describes what is really meant by a stochastic differential game of 

this type and its solution, but a rigorous discussion of these matters 

is beyond the scope of this report. 
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B. The Multistage Game 

The corresponding multistage game, which is treated in detail in 

Appendix A, is described as  follows, where i is an integer index 

varying from 0 to  N-1 for  some fixed integer N: 

x(i+l) = x(i) + G (i)u(i) - Ge(i)v(i) + E ( i )  
P 

N- 1 
xT(N)Sfx(N) + (uT(i)B(i)u(i) - vT(i)C(i)v(i))] 

i = O  

z (i) = H (i)x(i) + w (i) 
P P P 

The common prior is independent of the noises and 

is Normal (Go, p0). 

A solution to this game is obtained via the method described 

earlier by assuming minimax strategies of the form 

i 

and characterizing the parameters a and A in  terms of a set  of 

implicit difference equations. In order to derive the implicit equations, 
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it is expedient to define the "enlarged" state variables n(i), q (i), and 

qe(i), each of which is a partitioned vector with N+l partitions, and 

which a r e  defined for  i = 0, ..., N-1 and j = 0, ..., N a s  

P 

x(j) ; j i 

where (7r(i)) .  denotes the j-th partition of 7r(i), etc. The vector ?r(i) is 

called "the past of x at time i" since it contains all the information 

needed to determine all the previous values of the state vector x. F o r  

similar reasons q (i) [qe(i)] is called "the past of w [we] at time i." 

3 

P P 
The reason for defining these enlarged state variables is that 

the associated stochastic optimal control problems for the assumed 

pair of minimax strategies a re  of the classical linear-quadratic- 

Gaussian type when formulated in  terms of these variables. This means 

that the extensive body of results known for-this control problem can be 

applied to obtain the solutions of these associated optimal control 

problems explicitly in terms of the parameters of the opponents' 

assumed strategies, leading directly to a set  of implicit difference 

equations for the "enlarged" matrices characterizing the linear 

solutions (i. e. , solutions of this assumed form) to this multistage 

game. 
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C. The Basis of the Certainty-Coincidence Property 

In the above formulation, moreover, each player's measurement 

noise appears as  process noise in his opponent's associated optimal 

control problem. For  this reason, it can be argued via the certainty- 

equivalence principle for linear - quadratic -Gaussian c ontr ol problems 

that the sample path followed by the controls and state under this mini- 

max strategy pair, for the case in which the initial estimate is correct 

and all process and measurement noises a re  zero, is the same path a s  

that followed by the corresponding deterministic multistage game under 

its minimax strategies when started in the same initial state. This 

1 1  certainty-coincidence" property is useful in interpreting the solution 

to the stochastic differential game, which is the topic of ultimate 

interest , 

D. The Discretized Game 

The next stage of the derivation is to divide the time interval 

[0, tf] into N small subintervals of equal length A.  If, for the 

stochastic differential game described earlier,  the pursuer and evader 

a re  restricted to use constant control values during each subinterval, the transi- 

tion and criterion equation can be expressed in multistage form. 

equations a re  linear and quadratic, respectively, and for small A can 

be approximated to first order by 

These 

x[(i+l)A] = x(iA) + A[G (in)u(iA) - G (iA)v(iA)+ 5(iA)] P e 

N-1 I 

i-0 I 
(NA)Sfx(NA) -I- [uT(iA)B(iA)u(iA) - vT(iA)C'(ia)v(iA)] A i  
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This game can be posed entirely in the discrete-time format if the 

players' measurements a re  appropriately discretized, which is 

accomplished by allowing them to make measurements of the state 

only at times iA ; i = 0, ..., N-1. That is ,  the piecewise continuous 

controls must be based on the measurements 

z (in) = H (iA)x(iA) + w (iA) 

z (in) = He(iA)x(iA) + we(iA) 

(pursuer) 

(evader) 

P P P 

e 

In order to approximate the differential game situation properly, it is 

necessary to adjust the statistics of the measurement noises and the 

process noise so that they have asymptotically the same effect over 

each subinterval. This is done by choosing A<(iA), Aw ( in) ,  and 

Aw (iA) to have the same respective statistics as the random variables 
P 

e 

That is, in the discretized game, is defined to be a sequence 

of independent random variables which a re  

,-- 

1 
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The solution to this discretized version of the differential game 

is then obtained a s  a special case of the multistage game already solved, 

which is accomplished by making the following formal substitutions: 

i -+ iA 

1 Rp(i)  + -R (in) 
A P  

Re(i) -+- -E; 1 Re(iA) 

The purpose for  constructing this discretized game is to 

determine the asymptotic form of its solution a s  A approaches zero. 

A s  a first step in this direction, the first order approximations of the 

equations characterizing the solution a re  obtained for small A. This 

step is not altogether straightforward because the dimensions of the 

so the , 
1 enlarged state variables used in the solution vary as  

dimensions of the enlarged matrices involved in the solutions to multi- 

stage games become larger  a s  A becomes smaller. This difficulty is 

further complicated by the fact that different partitions of the enlarged 

matrices involved in the solution approach different orders of magni- 

tude as  A approaches’ zero. It is possible, however, to obtain through 

intuition and trial and e r ro r  the correct orders of magnitude of the 

various matrix partitions, and to isolate the first order terms in the 
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difference equations characterizing the solution to this problem. These 

manipulations a re  carried out in detail in Appendix B. Since the en- 

larged state variables a re  partitioned vectors, the enlarged matrices 

involved in the solution can be partitioned in a natural way. In fact, it 

is in terms of these matrix partitions that the first order difference 

equations for  the discretized game are  obtained. 

E. The Differential Game 

If the solutions to successively finer discretizations of the sto- 

chastic differential game originally posed exist and approach a 

limiting form as  the discretization interval approaches zero, then this 

asymptotic solution is taken to be the solution to the differential game. 

Although it is beyond the scope of this report to examine rigorously the 

significahce of the formal solutions resulting from this procedure, it is 

appropriate to comment briefly here on the justification for such an 

approach. 

First of all, it is reasonable to require that any meaningful 

solution to this type of stochastic differential game have the property 

of being the limiting form of the solutions to an approximating sequence 

of multistage games, especially since most such games ar ise  in 

practice from situations in which decision making and data processing 

a re  actually carried out on a discrete-time basis. Thus, although the 

definition of such a solution could probably be streamlined by defining 

some appropriate intermediate concepts, any reasonable solution 

should agree with the formal solution. 
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Once a formal solution of this type is obtained, however, there 

is still the question of whether it has any reasonable meaning. A good 

definition of "reasonable" here is suggested by the "K-strategy'' con- 

cept discussed by Isaacs (31 . Although originally defined for determi- 

nistic games, the natural extension of this concept to the present 

stochastic context is essentially the assertion that a player's strategy 

is minimax (in the sense of K-strategies) i f  it is the "limiting form'' 

of minimax strategies for this player in games that result from 

restricting both players to change control values only at specified 

times between the initial and final times, as the maximum time interval 

between control changes becomes infinitesimal (but independently so) 

for both players, i f  this limit exists. The limit concept referred to 

here means basically that the control histories produced by the mini- 

max strategies in the 

verge uniformly to that produced by the true minimax strategy for 

almost all sample paths of the measurements on which this player's 

control is based. Heuristically, this means that each player, i f  he 

11 restricted'' games (called K-strategies) con- 

processes his data rapidly, is applying approximately the correct con- 

trol, assuming that his opponent is also processing his data rapidly 

(but otherwise arbitrarily fast). When consideration is limited to 

strategies that a r e  linear functionals of the measurements, as is done 

here, this is equivalent to saying that the piecewise-constant weighting 

functions corresponding to the "restricted" minimax strategies con- 

verge uniformly to the weighting function corresponding to the true 

minimax strategy . 
Although the rigorous details a r e  glossed over, the K-strategy 
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concept is actually the basic motivation behind the analysis used here, 

in that the solution to the stochastic differential game is treated as  the 

limiting form of the solutions to a sequence of games in which the 

players a re  restricted to piecewise-constant controls. This analysis , 

however, is carried out in such a way that the time interval between 

control changes is constrained to be the same for both players, even 

though it becomes infinitesimal. The issue of allowing the maximum 

time between control changes to go to zero independently for  each 

player is ignored, under the implicit assumption that in most cases of 

interest this would not affect the asymptotic result. An example of 

such a situation would be a case in which the evader is allowed to 

change control twice as  often as  the pursuer, but with the interval 

between control changes being infinitesimal for both players. A s  a 

partial justification of this omission, however, it should be pointed out 

that such a situation could be modelled in the present framework by 

making the pursuer's measurement noise spectral density parameter 

infinite at every other time step, and halving it the res t  of the time. 

Since the payoff is convex in the control, this would mean that the pur- 

suer would only change control values at every other time step (when 

more information becomes available) , whereas the integrated effect of 

his measurement noise spectral density parameter in the differential 

equations, whose solutions characterize the game solution, would remain 

the same. 

A s  is suggested by the preceding remarks, the problem of 

determining a solution to the stochastic differential game at hand is 

essentially reduced to finding the asymptotic form of the matrix 
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difference equations characterizing the solutions to discretized versions 

of the differential game. Since these equations a re  available (to first 

order for small A) in partition-by-partition form, where the partitions 
1 a r e  indexed (say by j and k) from 0 to N (which is of order E),  it is 

helpful to make a modification in notation by referring to the j ,  k-th 

partition of an enlarged time-varying matrix A(iA) as A(iA, jA, M). 

In this way, the partitions of the enlarged matrix partitions become 

functions of three variables, each taking on values from 0 to tf (=NA). 

This makes the transition to the continuous limit very natural, by con- 

sidering the arguments to be continuously varying in the interval [0, tf]. 

Because of the differences in the orders of magnitude of the various 

enlarged matrix partitions, it is also convenient to modify some of the 

variables s o  that all these partitions a re  expressed in terms of normal- 

ized quantities (and A). After these two modifications have been made, 

it is fairly straightforward to obtain the asymptotic equations charac- 

terizing the linear solutions to the differential game. These constitute 

a system of implicit integro-differential equations. In Appendix C 

these equations a re  derived in detail, and are  recast into a neater 

form by a suitable redefinition of parameters. 
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4. THE SOLUTION 

A s  a result of applying the derivation described in the preceding 

section, and carried out in detail in the appendices, it is verified that 

a solution to this game can be obtained of the form 

t 
u(t) = -B-'(t)GT(t) Ap(t)zo + Ap(t, r)zp(r)dr] 

P 0 

provided that the parameters Ap, Ae, A and Ae a re  "well-behaved" 
P' 

functions of t and r ,  and satisfy a certain system of implicit equations. 

These equations, which were  mentioned in the previous section, result 

basically from the requirement that each player's minimax strategy be 

a solution to the stochastic optimal control problem which results from 

substituting his opponent's minimax strategy into the transition equation 

and the criterion functional. 

A. The Two Point Boundary Value Problem 

A discussion of the meaning and origin of the parameters involved 

in this system of equations will be deferred until later. For the present, 

this system of integro-differential equations should merely be con- 

sidered operationally as a set of equations which must be solved in 

order to find a pa i r  of minimax strategies for the stochastic differential 
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game. Adopting this point of view, these equations can be decomposed 

into a primary equation system, which can be solved independently and 

which determines the values of the A 's ,  and a 

system determining the values of the A's,  which can be solved given a 

solution to the primary equation system. Using the symbols Tp, Te, 
-1 T -1 T 

and Qe to represent, respectively, G B Gp,  GeC Ge'  &P' P 
HTR-'H and HeRe T -1 He, and suppressing the "t" argument for P P Pa 
functions of t only, these equation systems are: 

Primary Equation System 

s2 (t ) = Sf (19) 
P f  



-29- 

P (0) =Po 
P 

T -1 K (t, t) = P H R 
P P P P  
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Subsidiary Equation System 

D = T e A e - T  A - P  Q D * D ( 0 ) = I n  
P P P  P P P ’  P (39) 

D = T  A - T A - PeQeDe ; De(0) = I n  (40) e e e  P P  

(41) T ae ( t , T )  
= - ~ ~ ( t ,  T)Q D - e (t, t) = H D 

at P P ’  P e P  
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Notice that each of these two equation systems constitutes a two 

point boundary value problem, in that some of the boundary values a re  

specified at the initial time and some at the final time. However, they 

a r e  more complicated than the usual type of two point boundary value 

problem arising in optimal control theory. Firs t ,  some of the parame- 

t e r s  involved in these equations (such as  the I"s and 6 ' s )  a r e  functions 

of more than one variable. Also, the coupling between the differential 

equations is diffused over time, in that the derivatives of some of the 

quantities depend not only on the present values of the other quantities 

involved in  the equation system, but on past o r  future values a s  well. 

A qualitative diagram of the couplings among the various equations in 

these systems is shown in Figure 2. 

In summary then, the problem of finding a solution to the sto- 

chastic differential game at hand has been reduced to the procedure of: 

(a) finding a solution to the two point boundary value problem 

consisting of the primary equation system, 

using this solution to find a solution to the subsidiary 

equation system (also a two point boundary value problem), 

and 

substituting the values of h and fle from the solution to 
P 

the primary equation system, and the values of A and 

Ae from the solution to the subsidiary equation system 

into equations (17) and (18). 

(b) 

(c) 

P 

The form in which these minimax strategies a r e  expressed, a s  

obtained from this procedure, will be referred to a s  "Realization I." 

It will be shown later how other intuitively more satisfying realizations 



PRIMARY EQUATION SYSTEM 
r - - - - - - - -  -- - I  

FIG, 2 COUPLING IN THE IMPLICIT EQUATION SYSTEMS 
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of these same strategies can be obtained. The behavior of Realization I 

of the pursuer's minimax strategy is depicted schematically in Figure 3. 

€3. Interpretation of Parameters  

Although it is necessary to follow through the details in the 

derivation of the solution in order to really appreciate the origin and 

significance of all the parameters involved in the systems of implicit 

equations characterizing the solution to this game, it is possible to 

give straightforward interpretations to some of these parameters. 

Denoting the measurement histories {(z ( T ) ,  T )  : T G t} and 

( ( Z ~ ( T ) ,  T )  : T G t} by 2 (t) and Ze(t), it is shown in Appendix C that, 
P 

P 
assuming that both players use  their linear minimax strategies, 

and that, under the same assumption, 

% T This notation means E [(x(t)- x(t))(x(t)- %(t)) / Z  (t)] . P 



1 
- - - - - - - - - - - - -  

I 
1 

I 
I I 

1 

- - 
--,--I-- 

I FUNCTION SPACE" = AP 

I I 
I 

I 

I -  
I I 

I - 1  T --8 Gp 

U * 
"FUNCTION SPACE" r e f e r s  to  operations perfomed on functions of two 

var iab les  (which are like infinite-dimensional vector functions of 

time only). The n e t  output of t h i s  section of the  diagram is j u s t  

Qp(t ,U)zp(T)d? 

The reason t h i a  operation is represented i n  t h i s  somewhat obscure 

manner is to  i l l u s t r a t e  the  use of the  following function space 

blocks, which will be used i n  later figures:  

SYMBOL I INPUT I OUTPUT I 

FIG. 3 PURSUER'S STRATEGY - REALIZATION I 
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Thus, these parameters may be regarded a s  being associated with a 

kind of Kalman filter which produces estimates of the current state .Ei 

and fe and the opponents' measurement histories 2 

filters, however, a r e  based an the presumption that the opponents a r e  

employing their minimax strategies as  defined by equations (17) and 

(18). It is shown in Appendix C ,  in fact, that the "estimates" defined 

in equations (51)-(54) can be generated from the available measure- 

ments by the following Kalman filter-like differential equations: 

P 
These and 2 

eP Pe' 

t 

P P e e o  eP P P P  P P P  0 
ft  = G u f T A x f Te Ae(t,T)2 (T/ t )dT + P HTR-' [z  -H 8 ] ; 

2 (0) = xo (55) P 

ade ( ~ / t )  = M (t ,7)HpRp T -1 [Zp-Hpgp] ; 2 (t / t)  = H 2 
a t  P eP e P  

and 

T -1 t 4 = -Gev - T A x - T A&t, T)Zpe(T/t)dT + PeHeRe [ze-Hege] ; e P P O  P o  
- 

i i , ( O )  = xo (57) 

a2 e ( ~ / t )  = M (t,T)H T R -1 [ z ~ - H ~ % ~ ]  ; 2 (t/t) = H 8 
a t  e e e  Pe P e '  

f l  1 1  where again the t argument has been suppressed for functions of t 
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only. If it is further assumed that each player is using his linear 

minimax strategy (i. e., those strategies obtained in this report, a s  

opposed to some other possibly existing minimax strategies), the sum 

of the second and third terms in equation (55) can be interpreted as  

G 0, where 0 is the expected value of v given Z 

remarks hold for the second and third terms of equation (57). 

Analogous 
e P' 

The parameters A Ae, A and ne a re  obviously (from 

equations 17  and 18) the weighting functions for the initial state and 

the measurements in the minimax strategies. Finally, it can be 

qualitatively said that the remaining parameters (the Q ' s ,  Y ' s ,  r's, 
and TI'S) a r e  connected with the minimax cost-to-go in the players' 

associated optimal control problems, a connection which will  receive 

no further comment here. 

P' P 

C .  Another Realization 

Assuming now that a solution has been found for the primary and 

subsidiary equation systems, these solutions can be used in 

Realization I to implement the minimax controls directly a s  linear 

functionals of the available measurements. These same strategies can 

be expressed in a more interesting way, called "Realization 11," by 

substituting equations (33) and (34) for the A ' s  and equations (43) and 

(44) for the A ' s  in equations (17) and (18). These substitutions, 

followed by a change in the order of integration, show that the minimax 

controls can be expressed a s  
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t 

P 

/- 
u = -B-lGTj" H + Y  D H + J K (t, c)z (c)d(] + 

P P O  P P O  0 P 

Using equations (51)-(54), these optimal control laws can be rewritten 

a s  

and 
t 

0 
v = -C-'GT[ IIexo +Yejie + J q t ,  7)2 ( ~ / t ) d ~ ]  

Pe e (62)  

where the pursuer's estimates a re  generated by equations (55) and ( 5 6 ) ,  

and the evader's by equations (57) and (58). The action of Realization I1 

for the pursuer is displayed in Figure 4. Remember that the estimates 

produced a s  a part of this realization can be interpreted a s  Kalman 

filter estimates (i. e., conditional mean estimates) only if  the assump- 

tion is made that the opponents' strategies a r e  the minimax strategies 

derived here. In actuality, of course, each player's opponent is free 

to use some other strategy, in which case this interpretation is not 

valid. By construction, however, such efforts by either player to 

confuse" his opponent would only result in an overall detraction from I '  

his own expected payoff. 
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D. The Certainty-Coincidence Property: Realization I11 

Realization I1 expresses the minimax control laws in the more 

familiar form of linear feedback laws operating on estimates generated 

by a Kalman-like filter. It should be noted, however, that the estimates 

of the opponents' measurement histories used in this realization a re  

equivalent to infinite-dimensional vectors, the components of which 

a r e  indexed by the continuous variable corresponding to the previous 

times at which measurements were taken. This feature presents a 

serious difficulty in the implementation of the minimax strategies in 

this form. The certainty-coincidence property, besides being of theo- 

retical interest in its own right, provides a way around this difficulty 

to a certain extent. This is accomplished by the construction of 

another realization of the minimax strategies, designated 

"Realization 111," in which the infinite-dimensional parts affect only a 

set of correction terms, which a re  produced by deviations of the game 

from its deterministic behavior 

The first step in this construction is to notice that the necessary 

conditions derived in Appendix C for the noiseless sample path 

(equations C69-C72) uniquely determine this trajectory. The name 

noiseless sample path'' is used here to denote the trajectory followed 1 1  

by the game in the event that the initial state is actually Go and the 

process and measurement noises a r e  all identically zero, assuming 

that the minimax strategies derived here a r e  used by both players. 

This trajectory, moreover, coincides with the minimax path followed 

by the corresponding deterministic game, as  defined by equations (1) 

and (5)-( 7) with x( 0) = Go. Hence, the name "certainty-coincidence" 
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is applied to this phenomenon. 

Recalling that the matrix S(t) is defined by the differential 

e quat ion 

s = S[T P -Te]S ; S(tf) = Sf 

and substituting the deterministic minimax strategies into the determi- 

nistic transition equation shows that the minimax trajectory of the 

corresponding deterministic game has the property: 

Sx] = S& + Sx = S[Te-T ]Sx + S[T -Te]Sx = 0 ,  (63) z[ P P 

which implies that Sx is constant on this path. Therefore, on the 

noiseless sample path, which coincides with this deterministic 

trajectory, 

X(T) = s-l(T)s(t)X(t) for 0 < t , T  < t f ,  (64) 

assuming that S-l exists (which it does unless there a r e  redundant 

state variables in the problem formulation). 

Furthermore, it can be verified either by a direct examination 

of equations (55)-(58), o r  by the fact that these equations a re  the 

limiting forms of equations for  the discrete-time case for which these 

results a r e  verified in the appendices, that 

2 

on the noiseless sample path. Rewriting the minimax strategies from 

equations (61) and (62) by adding and subtracting identical terms, and 

writing So for S(O), a s  

52 (t) = Ae(t) = x(t), P 
(7/t) = H,(T)x(T), and 2 ( T / t )  = H (T)x(T) for all 0 S T S t 4 tf 

eP Pe P 

, 
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and 

this result, together with equation (64), implies that the first two terms 

in these expressions a r e  zero on the noiseless sample path, so that 

and 

there. 

But, since xo is arbitrary in the preceding remarks, this means that 

and 

Therefore , defining the discrepancy variables: 

e ( t , T )  z^ (T/t) - He(T)s-1(T)s(t)2?p(t) ; 7 < t 
P e p  

A -  h (t) = xo - SilS(t)% (t) 
P P 

the minimax strategies can be expressed a s  



-42- 

and 
t 

0 
v = -C-'GT[ Sjie + IIehe+ J re(t, 7)ee(t, 7 )  d ]  . e 

Notice that the second terms in equations (71)-(74) are,  respectively, 

ze(7), ze(7), xo, and Go on the noiseless sample path, so that the dis- 

crepancy variables a re  all zero on the noiseless sample path, and hence 

represent discrepancies between the deterministic behavior of the game 

and the behaviors perceived by the two players on the basis of the 

available measurements. 

- 

In view of these results, the action of the minimax strategies can 

be interpreted a s  follows. At each time, the players have information 

equivalent to conditional mean estimates (given that their opponents 

a re  using these strategies) of the current state and their opponents' 

measurement histories. The control that each player applies at this 

time is determined by the following procedure: 

(i) 

minimax path of the corresponding deterministic game) that 

intersects the estimate of the current state. 

(ii) Calculate h as  the discrepancy between the initial estimate 

of the initial state, Go, and the initial state of the above noise- 

less  sample path (equations 73, 74). 

Construct the noiseless sample path (or equivalently, the 

(iii) Calculate the function e as  the discrepancy between the 

estimate of the opponent's measurement history and the measure- 

ment history he would have received on this noiseless sample 

path (equations 71, 72). 
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(iv) Apply the control which is the certainty-equivalent control 

based on the estimate of the current state, plus feedback terms 

on the discrepancy variables h and e. 

At  the same time, the estimator sections of these strategies update 

the estimates of the current state and of the opponents' measurement 

histories . 

It is also possible to obtain for  each player a self-contained 

system of differential equations determining the estimate and dis- 

crepancy variables as functionals of the available measurements. 

Concentrating on the pursuer for the moment, equation (55) can be 

rewritten by adding and subtracting identical t e rms  as 

L 

P o  P 
k = G u + T  +AeSilSf -t Ae(t, T ) e  (t,  T)dT + 

P P  

Noting that the noiseless sample path necessary conditions imply that 

-1 T v = -C G e S x ,  

it follows from equations (18) and (64) that, for any g o ,  

on the corresponding noiseless sample path, since z 

Since equation (78) holds for  any value of xo, 
= Hex there. e 

Using this result, the estimation equation (77) is equivalent to: 
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T -1 t 

P e P  0 P 1 P P P  P P P  - 
iz (0) = xo. (80) 

= G u + T  SEi + A  h + $  Ae(tJT)e (t,T)dT + P H R [z -H 2 ] ; 
P P  

P 

Also, from the definitions of the discrepancy variables and equation (75), 

t 
h = -Si1[S2 + S i  ] = SO'S -TeAe]h + $ [T I? (t,T) - 

P 0 P P  
1 

P P P  

i T -1 T A ( t J ~ ) ] e p ( t J T ) d T  - P H R [Z -H 2 1 

hp(0) = 0 

e e  P P  P P P P I  

and 

Similarly, the estimation and discrepancy equations for  the 

evader in Realization I11 can be obtained as: 

( t , ~ )  - TeTe(t,r)] ee(t,T) dT - 

( 84) PeHeRe T -1 [ze-Heke] ; he(0) = 0 
j 
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Again, i f  the further assumption is made that each player's 

opponent is using his linear minimax strategy, the second terms in the 

estimation equations (80) and (83) can be interpreted a s  -GeO and -G G, 

respectively, where Q and Q have the same definitions as  before. 
P 

To summarize, the pursuer's minimax strategy in Realization I11 

is determined by equations (75) and (80)-(82), and the evader's by 

equations (76) and (83)-(85). A schematic representation of 

Realization I11 for  the minimax pursuit strategy is shown in Figure 5. 

E. Remarks 

The fact that the controls used 

equivalent contr o l  s plus discrepancy 

in Realization I11 a re  the certainty- 

terms which a r e  zero on the noise- 

less  sample path opens the possibility of constructing quasi-optimal 

strategies by replacing the infinite-dimensional discrepancy variables 

e and e by finite-dimensional "almost-sufficient'' statistics. Since 

such an approximation would only affect the corrections for noise-induced 
P e 

deviations, it is reasonable to expect that only a small decrement in per- 

formance would result, although the computational advantage gained 

thereby would be great, both in determining the feedback and estimator 

gains and in the implementation of the resulting strategies. 

optimal strategies based on this idea and their performances a r e  under 

investigation at the present time. 

Quasi- 

It is appropriate to comment here on the certainty-coincidence 

concept as compared to the certainty-equivalence principle of optimal 

control theory, which is instrumental in establishing the former in the 

present context. Like the certainty-equivalence principle, the 
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certainty-coincidence property implies that the optimal control laws 

(i. e., minimax strategies) for the stochastic differential game, if  they 

exist, will  result in the deterministic minimax state and control 

variable histories when applied to the corresponding deterministic 

differential game (with z 

equivalence principle, however, it does not say that the minimax 

control laws for the stochastic game can be obtained by using the mini- 

max strategies from the corresponding deterministic game with the 

feedback applied to the conditional mean estimates of the current state. 

In fact, the stochastic game may have no solution. That is, the 

certainty-coincidence property is like the certainty-equivalence 

principle going from the stochastic game to the deterministic game, 

but different going the other way. 

I 

= H x and ze = Hex). Unlike the certainty- 
P .  P 

Not much is known at present about the existence or  computation 

of solutions to  the primary and subsidiary equation systems, in terms 

of which the minimax strategies obtained here a r e  expressed. Some 

exploratory numerical calculations have been made, however, for  a 

variety of analogous multistage games (of the type considered in 

Appendix A). These computations basically consisted of iteratively 

determining the parameter values for new linear strategy pairs by 

letting each player optimize against his opponent's linear strategy 

determined by the parameter values of the previous iteration. Of 

course, i f  this procedure converges, the resulting parameter values 

determine a pair of minimax strategies, practically by definition. The 

results of these numerical experiments were that this procedure con- 

verged, regardless of the starting values, for parameter values that 
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would intuitively give the pursuer a good advantage (such a s  a high 

control cost for  the evader relative to the pursuer, o r  a low measure- 

ment noise for the pursuer). For  parameter values with the opposite 

characteristics, which correspond to the evader’s ability to escape 

and the non-existence of a minimax solution, this numerical procedure 

did not converge. Although these computations were only performed 

for  a small set of relatively simple multistage (two-stage, to be exact) 

games, the indication is that a generalization of this procedure could 

be applied to solving the primary and subsidiary equation systems, by 

A and he from old iteratively calculating new values of A 

values, solving for the new values (in equations 33, 34, 43, and 44) 

through an application of these equations to the old values. If the 

results of the exploratory calculations a re  valid, then this algorithm 

would converge if  a solution exists, and its failure to converge would 

mean that the evader could escape. (No solution exists of the form 

considered here.) The non-existence of such a pair of linear minimax 

strategies, however, is not known to imply that a non-linear solution 

does not exist. 

p’ Ae’ p’ 
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5. CONCLUSION 

There a re  two results of major significance concerning the 

solutions to the class of stochastic differential games examined in this 

report. Firs t ,  for  conditions under which there a re  solutions to a 

certain two point boundary value problem, there exist minimax strate- 

gies for  both the pursuer and evader which specify the controls a s  

linear functionals of the available measurements. It appears, however, 

that these strategies a r e  in general infinite-dimensional, meaning that 

these functionals cannot be represented as  the impulse response 

functions of linear networks described by finite-dimensional state 

vectors. In view of the construction of Realization 11, this difficulty 

appears to result from the need for each player to continuously esti- 

mate his opponent's entire measurement history in order to apply his 

optimal control. 

Also of significance is the certainty-coincidence property which 

applies in this context. This property, which has been shown to apply 

for the open-loop game, games in which one player has no measure- 

ments (solved by Rhodes [SI), and the class of games investigated by 

Behn and Ho [7] where one player has perfect measurements, which 

a r e  all limiting cases (but not special cases) of the class of games con- 

sidered here, states that the behavior of the stochastic game under the 

linear minimax strategies coincides with the behavior of the corre- 

sponding deterministic (closed-loop) game if the initial estimate 
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happens to be correct and the process and measurement noises happen 

to be zero. This result makes it possible to construct Realization 111, 

in which the importance of the infinite-dimensional part of the mini- 

max control laws is reduced, thereby opening the way for reasonable 

approximations to the minimax strategies by finite-dimensional control 

laws. 

Although the class of games considered in this report does not 

contain the types of games solved by Behn and Ho [7] and Rhodes and 

Luenberger [8] a s  special cases, the latter a r e  limiting cases of the 

type examined here. Figure 6 displays the relationship among these 

three classes of games, which a r e  differentiated primarily on the basis 

of the information sets  available to the two players. It can be shown 

that the solution obtained here reduces to that of Rhodes and 

Luenberger whenQ = 0 and R 

Appendix D.) The reduction to the case solved by Behn and Ho is more 

difficult, however, and has not yet been achieved. 

o r  Re approaches infinity. (See 
P 

A s  a final note, it should be mentioned that the analysis used 

here can be applied almost without modification to the case in which 

the two controllers of the dynamic system have objectives that a r e  in 

complete agreement, instead of in direct conflict. That is ,  the game 

is a completely cooperative one, or  alternatively, a stochastic optimal 

control problem with a decentralized controller, in this case divided 

into two non-communicating parts. The only difference in the result 

for such a situation would be some sign changes in the control laws and 

the two point boundary value problem. It also seems likely that this 

approach could be used for linear-quadratic-Gaussian non-zero-sum 

differential games of the type considered by Starr and Ho [9]. 
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Appendix A 

THE MULTISTAGE GAME 

The topic of discussion in this appendix is the multistage pursuit- 

evasion game defined by the equations 

x(i+l) = x(i) + G (i)u(i)  - Ge(i)v(i) + %(i) ; i = 0, . . . , N (AI) P 

z (i) = H (i)x(i) + w (i) 
P P P 

ze(i) = He(i)x(i) + we(i) 

common prior is Normal(Z 
0' 

where Sf, B(i), and C(i) a r e  symmetric and positive definite; and the 

prior. 

are statistically independent, 

The objective is to find a p a i r  of pursu i t  and evasion strategies 

(Uo,Vo) based on the available information, such that for any other 

pair of such strategies (U, V), 
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J(Uo,V) S J(Uo,Vo) S J(U,Vo) . 

Strictly speaking, the strategies under consideration must be limited 

to a suitable pair of sets  of admissible strategies for which the problem 

is meaningful. For our purposes here, it is sufficient to restrict  the 

pursuit  strategies to those f o r  which u(i) is a (Lebesque) measurable 

function of go, Po, zp(0), . . . , z (i) ,  and similarly for the evasion 
P 

strategies. 

The derivations in this appendix require extensive use of par- 

titioned matrices. F o r  this reason, it is convenient to introduce the 

notation 

Wi, j 
for  the i, j-th partition of a partitioned matrix A. Only one subscript 

will be used for a partitioned vector, o r  a vertically o r  horizontally 

partitioned matrix. The notation Ir and 0 will  be used to denote 
k, q 

the r-dimensional identity matrix and the k X q - dimensional zero 

matrix whenever the dimensions of these matrices a r e  not clear from 

the context. 

1. The Solution 

Suppose now that the evader uses a strategy consisting of a 

deterministic term plus a feedback term of the form 

Defining the following sequences of partitioned vectors (all with N+l  

partitions of equal dimension): 
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{di) : i = 0, . . . , N}, called "the past of x(i)," such that for each i 

and 

{ve(i) : i = 0, . . . , N}, called "the pas t  of w (i)," such that €or each i e 

it  is straightforward but tedious to verify by substitution that, if the 

evader uses the generic strategy described by equation (A5), the sto- 

chastic optimal control problem facing the pursuer can be expressed 

in te rms  of these "enlarged1' vectors by the transition equation: 

the "follower" type of criterion (to be minimized): 

- 0 - - + 

and the measurements (on the basis of which the controls a re  to be 

computed) : 



where, for  i = 0, . . . N-1; and for j ,  k = 0, . . . , N; 

(i) is a partitioned matrix such that e , 

qj (i) is a partitioned matrix such that e 

J? (i) is a vertically partitioned matrix such that 
P 

Gp(i) ; j > i ‘ (r (i)). = . .  
I 

P 3  0 ;  j < i  

0 (i) is a horizontally partitioned matrix such that 
P 

, H  ( i ) ;  j = i i  
(0 (i)). = P ? .  

P J  o ; j # i j ’  

Qe(i) is a vertically partitioned matrix such that 

‘ I  ; j = i + l !  
= J 

0 * j # i + l !  
? *  

r 

r,r 

Y(i) is a vertically partitioned matrix such that 

; j > , i + l !  
(Y(i)). = In > .  

3 o . j < i  , I ’  
- n,n ’ 

A (i) is a horizontally partitioned matrix such that e 
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D (i) is a horizontally partitioned matrix such that t? 

and where AN is a partitioned matrix such that 

S f ;  j = k = N  

(AN)j,k -i - OnXn otherwise) 

I' (i) is defined in the same way as I? (i), except that Ge(i) is used in 

place of G (i). As an aid to  comprehension, the forms of these 
e ' P  

P 
enlarged'' partitioned matrices are displayed in Figure A1 for the I I  

case in which N = 3. 

This formulation of the pursuer's associated optimal control 

problem (in which J is to be minimized) is useful because it is of the 

standard linear-quadratic -Gaussian type, the solution to which has 

been obtained by Joseph and Tou [ lo] ,  and Gunckel and Franklin [ l l ] .  

Defining for convenience 

- a  cp,(i) = 

L r (i) = 
- 

P 

a i )  ' 0 - Re(i) '[-; -j - -; - -1 , 
R (i+l) 



0 I 0 I 

FIG. At FORMS OF PARTITIONED MATRICES FOR N = 3  



FIGURE A !  ( Continued) 



i = f  

i = 2  

O p  ( i  1 

1 I 

[ 0 
Hp(tY 0 I 0 

I I 

F IGURE A! - ( Continued) 



FIG. A4 (Continued) 
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0 

the solution, if it exists, is given by 

S (i+l)(m (i)6 (i) - E  (i)a (i))] , P e eP e e  

where 6 (i) is the Kalman filter estimate for  oe(i) 
eP 

state of the pursuer's enlarged system, which is given by 

where 

S (i) = mT(i)[I - Sp(i+l)Tp(i)[B(i) +yT(i)S (i+l)T (i)]-' rT(i) S (i+l)me(i) 
P P P  P I P  
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y (i) = z:(i)[ I - SP(i+l)yP(i)[ B(i) +rT(i)S (i+l)T (i)] -1-T I? (i)] - 
P P P  P P 

The boundary value M (0) is expressed by dividing this matrix into 

(2N+2) (2N+2) partitions as follows: 
P 

; j,k = 0, ... , N  

j,k = 0, ... , 2 N + 1  (A351 

otherwise 

( Mp(0))j,k 

It has been established by Kalman and Bucy [ 121 that the estimate 

6 (i) can be expressed directly in terms of the pursuer's measure- 

ments as 
eP 

i 

where 

K (i, i) = P (i)G;(i)R-'(i) P . (A37) 
P P 
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6 (i+l) = [I-P (i+l)GT(i+l)R-l(i+1)G (i+l)] 
P P P P P 

{[I-. (i)[B(i)+FT(i)S (i+l)T (i)] -1 -T I' (i)S (i+l)] * 
P P P  P P P  

- (i)[B(i)+FT(i)S (i+l)F (i)]-' F:(i)r (i+l) 
P P P P P 

6 (0) = [I-P (O)GT(O)R-'(0)G (0)]aep(O) . 
P P P P P 

In the multistage case, this result is easy to verify by induction. 

Substituting equation (A36) into equation (A28), the pursuer's 

optimal control law in this context can be written as 

i 
u(i) = -a (i) - 2 A (i, j)Zp(j) , where 

P j=o  P 

a (i) = [B(i)+rT(i)S (i+l)T (i)] -1 -T rP (i) * 
P P P  P 

[ y  P (i+l) +s P (i+l)[z e P  (i)6 (i)-Ee(i)ae(i)1] ( ~ 4 0 )  

Strictly speaking, the equations determining this control law 

constitute a set  of necessary conditions for optimality. If, however, 

a control l aw  is found which satisfies these necessary conditions 

- and, in addition, satisfies the convexity condition 

[FT(i)S (i+l)F (i)+B(i)] positive definite for i = 0, ... , N - 1 ; 
P P  P 

(A421 
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then , by a standard result for linear-quadratic-Gaussian control 

problems, this is sufficient to guarantee that this control law is optimal. 

Conversely, if the pursuer employs a strategy of the form 

i 

an analogous construction and argument can be used to show that the 

optimal opposing evasion strategy is given by 

where 

[TT(i)S (i+l)F (i)+C(i)]-'F:(i)Se(i+l)m (i)Ke(i,j) ; j G i 

'k,r ' 

e e e P 
9 - N > , j > i  

-Ae(iJj)  = 

and where 

Se(i+l)g (i) - AT(i)B(i)A (i) 
P P P 

s (N) = -xN, e 
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(A49) 

(:&:, j ,  k = 0 ,  ... , N 
R (0 ) ;  j = k =  N + l  ( M e ( 0 ) ) j J k =  j , k =  0, ..., 2 N + 1 ,  

other wis  e 

e 

and w h e r e  

H e r e ,  the vector o (i)  is defined as [:;;I , w h e r e  r j  (i)  is 
P P 

given by 

jj:j.. 
( u p j  = i = 0, ... , N - 1 ;  j = 0, ..., N .  
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The quantities i3 (the evader's Kalman filter estimate of (T ), 0 
Pe P Pea  - - -  - -  

A D  re, Ep, Rp, Qp, Be, and are  
P' P' P' @P' P apt re, 3BP, oe, G? 

defined in exactly the same way a s  their oppositely subscripted 

counterparts in the pursuer's associated optimal control problem, 

except that all the "p" and "e" subscripts in the definitions a r e  inter- 

changed, and the dimensions of the zero and identity matrices used in 

I t  the definitions a re  altered by interchanging the parameters rn" and 

11 'I 1 1  I t  , and q and r . Ilk!! 

Likewise, if any evasion strategy of the form of equation (A44) 

is found which satisfies equations (A45)-(A52) - and the convexity 

condition 

C(i) -I- FT(i)Se(i-t-l)Fe(i) positive definite for i = 0, . . . , N-1, e 
(A541 

then this  strategy is optimal (maximizes J)  against the generic 

pursuit  strategy assumed in equation (A43). 

Therefore, by construction, any pair (U, V) of pursuit and 

evasion strategies of the form 

i 

j = O  
u : u(i) = -a (i) - A (i, j)zp(j) P P 

i 

such that the primary system of implicit equations (A31, 33, 34, 35, 37, 

41, 45, 47-50), the subsidiary system of implicit equations (A32, 38, 40, 

46, 51, 52), and the convexity conditions (A42, 54) a r e  satisfied is a 

pair of minimax strategies for this stochastic multistage game. 
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These systems of difference equations, when viewed a s  sets of 

implicit equations for determining a minimax strategy pa i r ,  each 

constitute a kind of two point boundary value problem. These a re  more 

complicated than the usual kind of two point boundary value problem, 

however, in that the entire solution to the "M" (or I ' P l l )  equation 

schemes is a boundary condition for the "KIT equation schemes, 

although the only externally imposed boundary conditions on the 

equation system as a whole a re  at the initial and terminal times. Also, 

there is the difficulty that the dimensions of the parameter matrices 

involved in this solution increase in proportion to the number N of 

stages in the game. This means that the number of variables involved 
3 in this set of implicit equations increases approximately as N . 

Notice that the primary system of implicit difference equations 

I !  11 I 1  I t  I !  II can be solved independently, and that y , a , and 6 variables can 

be taken as identically zero to satisfy the subsidiary system of 

equations in the case where x 
involve the solution of the primary system of equations. Since B(i) 

and C(i) a r e  positive definite by assumption, these convexity conditions 

correspond roughly to the "no conjugate point condition" of optimal 

control theory. Exploratory numerical calculations have been carried 

out for a variety of two-stage games, which indicate that linear 

solutions of the type assumed do indeed exist for intuitively reasonable 

parameter values, and do not exist for values which would give the 

evader a good chance to escape. The non-existence of such minimax 

= 0. Also, the convexity conditions only 
0 

solutions, however, is not known to imply that some other type of 

admissible solution does not exist. 
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The systems of enlarged state variables previously constructed 

can be looked on merely a s  abstract transformations that result in 

solutions of the desired form. It is of interest, however, to use the 

interpretations developed there to derive some of the properties of 

the parameters arising in the solution. 

pursuer's optimal control problem, and writing [;:;;J - - - for &ep(i)J it 

is a standard result of the filtering theory developed by Kalman [13] 

Considering for the moment only the system constructed for the 

that the vectors $(i) and ?,(i) a re  the conditional expected values of 

n(i)  and ue(i) given the measurements Z (i). Partitioning these esti- 

mate vectors in the natural way, it follows from the definitions of di) 

and qe(i) that the last N-i  partitions of fie(i) a re  zero, and that the last 

N- i+l  partitions of $(i) have the same value, for all plays of the game, 

P 

because the expectations can be decomposed to give the following 

results for  j > i: 

Notice that estimates a re  continually being calculated not only for the 

current values of x and w 

these a re  also included in the T and qe vectors. 

but for all previous values a s  well, since e' 

Under this interpretation, it is also clear that the matrix P (i) 

is the covariance matrix of the conditional probability distribution of 
P 

the random vector given the measurements Z (i). Since this 
P 
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distribution is Gaussian, P (i), %(i), and qe(i) completely character- 

ize it. Again it should be emphasized that the matrix P (i) not only 

contains the covariances of x and we at previous times, but also the 

correlations between their values at different previous times. 

Partitioning P (i) in the obvious way to correspond to the partitions of 

the n(i) and qe(i) vectors, it is a consequence of the definition of these 

vectors and the fact that P (i) is the conditional covariance matrix 

P 

P 

P 

P 
associated with them that 

(pp(i))j,k = 

Analogous remarks 

sis of the optimal control 

for  j 2 N + i + 2  

o r  k & N + i + 2 .  - 

hold for the variables defined for  the analy- 

problem facing the evader. 

2.  The Certainty-Coincidence Property 

The fact that the associated pair of optimal control problems for 

this game are  of the linear-quadratic-Gaussian type when expressed in 

te rms  of the enlarged state variables can be used to gain some inter- 

esting insights into the nature of the linear minimax strategies. Suppose 

for the moment that a pair of such minimax strategies (U , V') has been 

found that satisfy the implicit equations. Defining 

* J -  

it can be verified from the pursuer's associated optimal control 

problem solution (equations A28-42) that 



-A19- 

( i + l ) ~ T ( i + l ) R ' l ( i + l ) ~  
7 i? (i) [ ~~~~ 

e P P P P 

+ P (i+l)GT(i+l)R-'(i+l)wP(i+l) 
P P P 

Therefore, i f  this pair of minimax strategies is used and the initial 

e r ror ,  the process noise values, and the measurement noise values 

for both playe 

An analogous argument shows that the e r r o r  E (i) for  the evader's 

corresponding Kalman filter for CT (i) (the equations for which have 

not been listed) is also identically zero under these circumstances, 

a re  all zero, then E (i) is zero for i = 0, ... , N -  1. e 

P 

P 

so that 6 (i) = oe(i) and 6 (i) = (T (i). eP Pe P 
Furthermore, the certainty-equivalence principle fo r  linear- 

quadratic-Gaussian optimal control problems, as  applied to the for- 

mulation of the pursuer's associated optimal control problem in terms 

of the enlarged state variables, implies that the pursuer's minimax 

strategy UT for the stochastic game, with the formal substitution of 

oe(i) for 6 

d e f ine d by 

.L. 

(i) is optimal in the corresponding deterministic game 
eP 

- 
x(i+l) = x(i) + G (i)u(i) - Ge(i)v(i) ; x(0) = xo (A62) 

P 

(A631 
N- 1 

Jd = 'i xT(N)Sfx(N) + i = O  (uT(i)B(i)u(i)-vT(i)C(i)v(i)) 

* 
against the evader's stochastic minimax strategy V , with the substi- 

tution of H ( i )x ( i )  for z (i). The certainty-equivalence principle ap- 

plies here because the evader's measurement noise appears a s  
e e 
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process noise in the enlarged system constructed for the pursuer's 

associated optimal control problem. Analogously, V , with the formal 

substitution of cr (i) for ^o 

replaced by H (i)x(i), in the same deterministic game. Labeling these 

* 
JI 

(i), optimizes against U-., with z (i) 
P Pe P 

P 

this means that in the deterministic game 

for any other pair of deterministic pursuit  and evasion strategies (U, V). 

The strategies expressed by equations (A64) and (A65) result from 

applying the certainty-equivalence principle to equations (A28) and (A55), 

respectively; and similarly for  the strategies V' and V" defined by 

equations (A66) and (A67). 
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Moreover, on the noiseless sample path in the Stochastic game 

(x(0) =Go, w (i) = we(i) = E ( i )  = 0). the control histories resulting from 

playing the stochastic minimax strategy pair (U , Q 1 can be expressed 
* *  P 

either a s  

i 

and 
i 

or  as 
c 

(i+l)? (i)+B(i) P 

and 

since ^o (i) = o (i) and 6 (i) = (T (i), as  was shown earlier in this 

section, and z (i) = 0 (i)o,(i) and ze(if = Gefi)a (i). Furthermore, 

the state variable history in the stochastic game is given in  te rms  of 

these control histories as 

eP e Pe P 

P P P 

x(i+l) = x(i) + G (i)u(i) - Ge(i)v(i) ; x(0) = go (A741 
P 
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under these circumstances. Therefore, playing any one of the strategy 

p a i r s  (U', V'), (Uf ,  V"), (U", V'), or (U", V") in the deterministic game 

results in the same trajectory, namely the noiseless sample path of the 

stochastic game under the strategy pair (U , V  ). 
* *  

A s  a result, in the deterministic game, 

J (Uf, V') = J ( U f ,  V") = Jd(Uff,  V') = Jd(U", V") . (A751 d d 

This result, together with the preceding inequalities, shows that U" 

and V" a re  minimax strategies for  the corresponding deterministic 

game. Therefore, the noiseless sample path of the stochastic game 

under the stochastic minimax strategy pair (U , V".) coincides with the 

deterministic minimax path followed by the corresponding determi- 

nistic game under the deterministic minimax strategy pair (U", V"). 

Since this noiseless sample path - is a deterministic minimax path, it 

must satisfy necessary conditions that can be derived for  minimax 

paths in the corresponding deterministic game. Such necessary con- 

ditions a re  used later to determine some interesting properties about 

stochastic minimax strategies, but this procedure is not employed at 

this stage since the real  interest here is in differential games, and 

since the necessary conditions a re  very messy for the multistage 

game. 

* .I. 



Appendix B 

THE DISCRETIZED GAVE 

Before deriving the equations for the discretized game discussed 

in section 3B, it is convenient to divide the enlayged vector and matrix 

variables involved in the solution to the multistage game into major 

partitions, in accordance with the partitioning af (T and cr as 

and [c] . Using the well-known fact that the "S," "P," and I'M" 

matrices a re  symmetric, this leads to the partitioning of the 'IS,'' "P," 

I'M,'' and "K" matrices a s  

[:I e P 

Pp(i) = 

Kp(i)= [~~:::], - - - 

Se(i) = 

Pe( i) = 

M (i)= e 

Ke( i) = 
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and the partitioning of the "y" and "6" vectors as 

yp(i) = 

6 (i) = 
P 

where 

S (i) ,  Sel(i), P (i) ,  Pel(i), M (i), and Mel(i) a r e  
P l  P l  P l  

n(N+l) X n(N+l) - dimensional matrices, 

S (i), P (i), and M (i) are  n(N(1) X r (N+l )  -dimensional 
P2 P2 P2 

matrices , 

Se2(i), Pe2(i), and Me2(i! are  n(N+l) X q(N+l) - dimensional 

matrices, 

S (i), P (i), and M (i) are  r(N+1) X r(N+1) -dimensional 
P3 P3 P3 

matrices , 

Se3(i), Pe3(i), and Me3(i) a re  q(N+l) X q(N+l) - dimensional 

matrices, 

K (i) is an n(N+1) X q-dimensional matrix, 
P l  

K (i) is an r (N+l )  X q-dimensional matrix, 

Kel(i) is an n(N+l) X r-dimensional matrix, 

K 

y (i), 6 (i), y (i), and 6 (i) a r e  n(N+l)-dimensional vectors, 

y (i) and 6 (i) are  r(N+l)-dimensionalvectors, and 

y (i) and 6e2(i)  a r e  q(N+l)-dimensional vectors. 

P2 

(i) is a q(Nt1) X r-dimensional matrix, e2 

P l  PI e l  e l  

P2 P2 

e2 



-B3- 

The solution to the multistage game examined in Appendix A can 

be expressed in terms of the partitions defined b,y equations (B1) -(B6). 

Using the equations obtained in Appendix A, it i s  just a matter of 

computation to obtain the minimax strategies as  

where the parameters a re  determined by the primary and subsidiary 

systems of implicit equations. The primary system of equations, 

when expressed in  terms of these matrix partitions, is: 

p (i) = M (i) - M  (i)OT(i)[O (i)M (i)O T (i)+R (i)]- 1 0 (i)Mp2(i) 
P2 P2 P l  P P P l  P P P 
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[S (i+l)-Sel(i+l)$ (i)] - AT(i)B(i)D,(i) ; Se2(N) = 0 (E3211 
e 2  P P 
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The S and Se3 equations turn out to be superfluous. The subsidiary 

system of implicit equations can be expressed in terms of these par -  

titions as: 

P3 

6 (i+l) = [I-P (i+l)O T (i+l)R-'(i+l)O (i+l)] [ [ I - ~ ~ ( i ) ] 6  (i) - 
P l  P l  P P P P l  

6 (i+l) = 6 (i) -PT (i+l)OT(i+l)R-'(i+l)O (i+l) [I-ge(i)]6 (i) - P2 P2 P2 P P P P l  
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Sel(i+l)r  (i)a (i)] - AT(i)B(i)a (i) ; Y,~(N) = 0 (3335) P P  P P 

6 (i+l) = [I-Pel(i+l)Oe T (i+l)R,l(i+l)Oe(i+l)] [[I-@ (i)16el(i) - 
e l  P 

The 6 

vexity conditions can also be written in terms of these partitions as 

and 6e2 equations also turn out to be superfluous. The con- 
P2 

(B(i)+rT(i)S 

[C ( i)+rT ( i) s e 
positive definite for i- 0, ..., N-1 . 

(3339) 

P P l  

Finally, it is convenient for future use to obtain the Kalman filter 

equations for the pursuer's and evader's associated optimal control 

probleps in partitioned form. Using 

- 
np(i) 

for ?3 (i) and [= - -1 
eP r I e p  

for (i), the equations for the pursuer are: 
eP 
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and the equations for  the evader's Kalman filter can be expressed as: 
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Now consider the discretized game developed in the "Derivation 

Outline" section: 

x((if1)A) = x ( U )  + [G (iA)u(iA)-Ge(ia)v(ia)]A + [E(iA)A] (3348) P 

I T 
N- 1 

J = E j :T x (NA)Sfx(NA) + [uT(iA)B(iA)u(iA)-v (in)C(iA)v(fi)] A 
i i= 0 P 

(3349) 

z (iA) = H (iA)x(iA) + wp(iA), (€350) 
P P 

where 

random variables, and the common prior is Normal(% 

this  is a special case of the multistage game examined in Appendix A, 

its solution can be obtained immediately from that of the more general 

multistage game by making the following substitutions in the solution 

presented in Appendix A: 

Po). Since 
0' 

i -+ iA 



Once this is done, it is possible to use the definitions of the @, 

9, R ,  r, 0, A, D, and Y matrices (see Appendix A) to express the 

solution in te rms  of the subpartitions of the enlarged variables. That 

is, the Spl, Sel, Pp lJ  Pel ,  MplJ  and Mel matrices are divided into 

(N+l)X(N+l) subpartitions of dimension n X n, corresponding to the 

N + l  partitions in the 7~ vector; and the other enlarged variables a re  

partitioned into (N+1) X(N+1) subpartitions ( o r  N+1 subpartitions in 

the case of vector variables, o r  variables defined in Appendix A as  

vertically o r  horizontally partitioned matrices) of the appropriate 

dimensions. 

Since the real  objective here is to obtain first-order equations 

fo r  small A (and hence large N) ,  it is convenient at this point to 

determine which terms in the subpartition equations a re  of first- 

order SignilFicance, and which a re  of higher order, so that the latter 

need not be computed. This procedure is not altogether straight- 

forward, however, the difficulties being caused by the fact that the 

number of indices being summed in the subpartition equations is of 

order N ( = i )  , which becomes infinite a s  A approaches zero, and by 

the fact that the various subpartitions a re  of different orders of magni- 

tude as  A +. 0. It has been possible, though, to find the orders of 

magnitude of these subpartitions that a r e  consistent with the equations 

they satisfy, mainly through a procedure of trial and er ror .  The 

result is that the S I I  1 1  2 subpartitions a re  of order A , the "K" and " y "  
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11 l f  subpartitions and the "A1' matrices a re  of order A, and the tlP1l and 6 

1 1  I t  subpartitions and the a vectors a re  of order unity, with the following 

except ions : 

(ypl(i))N is of order unity, 

is of order A; j = 0, ..., N, (Spl(iA)) ,N = (Spl (iA)),, T 

(Pp3(iA))jJj  is of order - 1 

(Sp2(iA))N,j is of order A; 

A' 

j = 0, ..., N, 

j = 0, ..., i (because it contains the 

covariance of the evader's measurement noise), 

and similarly for the evader's parameters. The I'M" variables are  

incorporated into a system of difference equations in the "P" vari- 

ables, and are  therefore not used explicitly. The orders of magnitude 

of the pursuer's S 

Figures B1 and B2. 

' I  ' I  and "P" matrix subpartitions are shown in 

With this result in hand, and defining 6( i ,  j) as the Kronecker 

delta function: 
i 

i 1 ;  i = j i  

i o ;  i + j ,  i 6( i ,  j )  = f 

and U(i) as  the unit step function: 

0 ;  1<0;  

it is straightforward but tedious to calculate the first-order subpar- 

tition equations a s  the following: 



LTT -ORDER A 

-ORDER UNITY 

FIG. 91 PARTITION MAGNITUDES - Sp AND Se MATRICES 

(DISCRETIZED GAME) 



, 4  - ORDER, 

I 

Pi( i A )  

FIG. B 2  PARTITION MAGNITUDES - Pp AND Pe MATRICES 
( DISCRETIZED GAME) 
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S f ;  j = k =  N 
(' P l  (NA). J Y k  = 0 n,n otherwise) 

(sp2(iA))j,k = (Sp2((i+l)A)) j J k  - 1 e IHT(jA)AT(iA, e jA)C(iA)Ae(iA ,A) + 



-B15- 





(Pe2(iA)). A + R ((i+l)A)s(i+l,j)s(i+l,k) ; 
Lk A P 
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To first order, the convexity conditions that constitute par t  of the 

sufficient conditions for this discretized game are that the quantities 

and 

be positive definite for i = 0, ..., N-1. As  A approaches zero, these 

conditions are automatically satisfied by the fact that B(i) and C(i) are 

positive definite, providing that the solution to the primary equation 

system is asymptotically well behaved. It should be noted that it is 

reasonable to expect that this proviko - not hold in situations where the 

corresponding deterministic game has a closed-loop conjugate point 

(the evader escapes), since a degradation in information seems to be 

in the evader's favor (see the "Problem Statement" section). 
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It is also straightforward to verify that the minimax strategies 

corresponding to these parameters can be expressed as: 

i 

j =O 

i 

j = O  

u(iA) = -a (iA) - A (iA,jA)zp(jA) (pursuer) 0378) 

v(iA) = ae(iA) + Ae(iA,jA)ze(jA) (evader), 0379) 

P P 

and 

and that the Kalman filter equations can be written in terms of the 

subpartitions as: 

(% ( ( i+l)A)) .  = (3 (iA))j - U(j-i-1) (iA)u(iA) + 
P 

-i 

P J P 

HT( (i+ 1)A )R-l((  i+ 1)A) [z ((i+l )A) -H (( i+ 1)A) 
P P P 'pp 1 (( i+ 1 )A )) j , i+l 

- 
<%p((i+l)A))i+l]A ; (3 ( 0 ) ) .  = xo (B80) P J  
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The deterministic game corresponding to  this discretized 

stochastic game is described by the equations 

N- 1 
J = 2 1 T  x (NA)Sfx(NA)+ (uT(iA)B(iA)u(iA) -vT(iA)C(iA)v(iA))A, 

where the pur sue r  and evader can measure the state exactly. The 

calculus of variations can be employed in the usual way (as in Ho, 

Bryson, and Baron [6])  to derive necessary conditions for the 

trajectory followed by this deterministic game (i.e., the state and 

control variable histories) when the players use minimax strategies. 

Although these necessary conditions weren't stated for  the more 

general multistage game examined in Appendix A because of their 

algebraic complexity, they can be more succinctly expressed to first 

order in this case, for small A ,  a s  

From the results obtained in  Appendix A on the certainty-coincidence 

property, these necessary conditions must be satisfied by the noiseless 
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sample path followed by the discretized stochastic game when the pair 

of minimax strategies determined to first order by equations (B52-75) 

a re  used by the pursuer and evader. Since this is true for - all 

sufficiently small A , the limiting form of these necessary conditions, 

as  A goes to zero, must be satisfied by the noiseless sample path 

corresponding to the limiting form of the minimax strategies, pro- 

viding these limits exist. Since the solution to the differential game is 

treated as  such a limiting form of strategy pair, this result will be 

applicable to  the minimax noiseless sample path in the differential 

game. 



Appendix C 

THE DIFFERENTIAL GAME 

The solution to the stochastic differential game originally posed 

is obtained by taking the limiting form of the solution to the discretized 

game of Appendix B as  the discretization interval A becomes infinitesi- 

mal. With an appropriate redefinition of variables, this approach leads 

quite naturally to a characterization of the (linear) minimax strategies 

for the differential game in terms of a system of implicit integro- 

differential equations with split boundary conditions. 

A s  is suggested by the remarks made in section 3E of this report, 

the next step in solving the problem at hand is to obtain weighting 

functions L 

by them, 

Le, a P’ P’ 
and ae so  that the linear strategies determined 

+ 
u(t) = -a (t) - JL (t, s)z (s) d s  P o p  P 

and 

a re  the limiting forms, in the sense mentioned earlier,  of the mini- 

max strategies for the discretized game. This means that A (in, jA), 

A (iA,  jA),  a (in), and a (in), when considered as  step functions with 

continuous arguments, should converge uniformly to these weighting 

functions as  the discretization interval approaches zero. Such 

P 

e P e 
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weighting functions a re  characterized by the system of integro- 

differential equations that results in the limit as A + 0 from the 

system of first-order difference equations characterizing the solution 

to the discretized game. 

Before passing to the continuous limit, however, it is convenient 

to make some modifications in the notation for the discretized game 

solution. Firs t ,  instead of referring to matrix partitions such as  

( A ( ~ L ) ) ~ , ~  , a new matrix function A of three arguments will be defined 

a s  

In this way, all three arguments range over the interval [0, tf] a s  i,  j ,  

and k take on values from 0 to N, no matter how fine the discreti- 

zation is. These arguments will be considered continuous variables in 

the continuous limit. Second, the equations will be written in terms of 

normalized variables in order to avoid the impulse functions that would 

otherwise result in the asymptotic formulas from the inclusion of 

terms of varying orders of magnitudes. 

These two modifications a re  incorporated in the following defi- 

nitions, where j and k a re  indices taking on integer values from 0 

to N: 

T P (in) 5 G ~ ( ~ A ) B - ~ ( ~ A ) G ; ~ ( ~ A )  

j f N  



and an analogous set of definitions for the corresponding variables in 

the evader's associated optimal control problem. 

Using this modified notation, the equations defining the lifiear 

minimax strategies in the discretized game (equations B52-79) become 

in the continuous limit (suppressing the ' I t "  argument for functions of 

11 11 t only): 

Primary Equation System 
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-c 5- 



-C6- 

An analogous set of equations for the evader's corresponding variables 

is also part of this equation system, the only differences being the 

interchanging of "B" and 'lClfJ "p" and 'le", "m" and I'kll, ' I  g I '  and 1 1  r 11 , 

and the boundary condition S (t ) = -S f .  eN f 

Subsidiary Equation System 

and an analogous set of equations for the evader's corresponding variables. 
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The linear minimax control laws are  given in terms of these new 

parameters as: 
I 

and 

v = a 4- fZe(t , r )ze(T)  dT 

A A Defining 3 (a, jA) = (3p(iA))j and ?j (in, jA) = (q (in)). for the 
P eP eP J 

discretized game, and similarly for the evader, the Kalman filter 

equations become in the continuous limit: 

P (t,r,t)HTR-l[z (t)-Hpjip(t,t)] ; 
P l  P P  P 

a6 e ( t , ~ )  = P (t,t,T)HeRe T -1 [ze-He?,(t,t)]; 4 (t,t) = 0 . 
a t  e2 Pe 

It is straightforward to verify by substitution in equations (C2) - 
((25) that, if a solution to the primary equation system exists at all, 

then a solution is available of the form: 
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and 

s (t,T,u) = s (t,T,o)He(u); 0 S t , T ,  u S t f .  (C24) 

Likewise, a solution is also available under these circumstances with 

P l  P2 

the additional property: 

and 

Henceforth, only solutions of this form will be considered. 

From the symmetry of the "S" and I'P" matrices in the discre- 

tized game, it follows by definition that 

It is also of interest to note that, since by the definition of the enlarged 

state variables, 

for all t g T G tf, where Z (t) denotes the pursuer's measurement 
P 

history up to time t, and since for all possible measurement histories 

(for any 0 G T G tf): 



it is necessary that 

and 

K (t,(T,T) = 0 ; 0 G (T G t G T G tf . (C34) P2 

These observations can be used to simplify the equations charac- 

terizing the minimax strategies. Defining the new variables (where t, 

7, and CT are  in the interval [0, tf]) : 
- 
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A P (t) = P (t, t, t) , 
P P l  

and 



-c11- 

the primary equation system can be expressed in terms of these 

quantities. This is accomplished by straightforward substitution in the 

original primary equation system, the use of Leibnitz's rule for differ- 

entiating integrals, and the expression of E (t,t) (for example) a s  
P l  

The resulting equation system is: 

': 

P (0) =Po 
P 

O d ~ S t t ;  M ( t , t ) = P H T  
P P e  
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aN ( t , 7 ,~ )  
= -M;(t,T)Q M (t,o) , 0 S 7 ,  G S t ;  

a t  P P  
N (t, 7 ,  t) = N T (t, t, 7) = M (t, 7)He(7) T 

P P P 

T aL ( t a 7 , ( 3 )  
= -Mp(t ,5)Q K ( t , T ) ,  0 S T , G  S t i  

a t  P P  
L (t, t, o) = M T (t, o)H R-' 

P P P P  
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0 =S 7 S t ;  Me(t,t) = P HT 
e P  

A s  a consequence of these definition$, it also follows that 

The subsidiary equation system can also be simplified by making the 

definitions: 
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Similar manipulations can be performed on the subsidiary equation 

system to produce a simplified version thereof in terms of the 

variables jus t  defined. Noting, however, that the resulting equations 

a re  linear in these variables, given the solution to the primary equation 

system, and that the boundary conditions a re  proportional to 2 

solution is sought of the form: 

a 
0' 



Further substitution shows that a solution of this form is obtained i f  the 

following equation system is satisfied: 

D = T e A e - T  A - P Q  D * D ( 0 ) = I n  
P P P  P P P ’  P 



-C16- 

D = TeAe - T A - PeQeDe ; De(0) = I, 
e P P  

where 

and 

The minimax control laws, when expressed in terms of these new 

variables, are: 

and 

A s  a further consequence of the definitions of these new variables, 

it should be noted that the following interpretations can be made, 

assuming that these minimax strategies a re  employed: 

Mp(t,7) = cov[x(t), ze(7)/Zp(t)] ; 0 < 7 t 

N (t,T,cr) = cov[ze(7), ze (~ ) /ZP( t ) ]  ; 0 S 7, (3 < t 
P 
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Also, the Kalman filter estimates ean be expressed in the following way: 

The differential equations for the Kalman filter estimates just 

defined can be obtained from equations (C19)-(C22) as: 

1 = -G v - T (t,T)hZ (T/t)dT + 
Pe 

. aPe(t,t,) 
? =  

e a t  e 

P H T R -1 [ze-Hege]; fie(0) = Go , e e e  

T -1 
= M (t,T)H R [ Z  -H 2 1;  

ahZe b/t) 'a? ( t ,T)  a?, (t,7) 

a t  P P P  P P P  
a t  = He(7) Pat + 

and 
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Finally, the necessary conditions for  the minimax trajectory in 

the corresponding deterministic game, given in the discretized ease by 

equations (B84) and (B86)-(B88) , become in the continuous limit: 

u = - B - ~ G ~ s ~  , (C 6 9) 

(C 7 0) 

P 

-1 T v = -C GeSx ,  

and 

X = G U -  Gev ; 

S = S[T -Te]S ; 
P 

x(0) = Go , P 

S(t,) = Sf . 

The necessary conditions given by equations (C69)-(C72) must also be 

satisfied by the noiseless sample path of the differential game when the 

linear minimax strategies given by equations (C59) and (C60) a re  in 

effect, since the differential game is treated a s  the limiting ease of the 

discretized game. It is reassuring that the necessary conditions for the 

noiseless sample path obtained by this analysis agree with the established 

solution for  the corresponding deterministic game a s  given by equations 

(1) and(5)-(7). 



Appendix D 

A LIMITING CASE 

In Rhodes and Luenberger [8] it is shown that the solution to the 

game in which there is no process noise (Q = 0) and the evader has no 

measurements (R = 00) is given by: e 

= -B- 'G~[DE~: + ( s - D ) % ~ ~  (D1) P P  

and 

v = -C-lGZSSe (D2) 

where 

(D3) 

2 = [T -T ] Ŝ xe 4,(0) = Xo (D4) 

S = SCT -T 1s; S(t,) = Sf (D5) 

8 = G  u - G e v + M H  T R -1 [Z -H 2.1; fi ( 0 ) = X o  
P P  P P  P P P  P 

e e P  

P e  

P D = DT D ;  D(tf) = Sf (D6) 

M = -MQ M; M(0) = Po (D7) P 

and where T 

is the same as that obtained from the solution derived in this report 

by formally letting Q = 0 and R 

Te, Qp, and Qe a r e  defined as before. This solution 
P' 

= 00, as is shown below. e 

1. The Evader 

Looking at Realization 111, it is clear from equations (84) and (85) 

that, since Re1 = 0, the driving te rms  are zero and hence he E 0 and 
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e 5 0. From equation (83), therefore, e 
- 

8 = -G,v - T S? . 8 ( 0 )  = x 0 ,  (D8) e p e ’  e 

where S is given by equation (D5). From equation (76), 

(D9) -1 T v = -C GeS8, , 

so that equation (D8) can be rewritten as  equation (D4). With equation 

(D9), this implies that the two evasion strategies agree. 

2.  The Pursuer 

Since R = 00, it follows from equations (30), (32) ,  and (34) that e 
K = 0 ,  L = 0, and A = 0 is a solution to these equations. There- 

fore, from equation (21),  = 0. From Realization I, and the fact that 

the evasion strategies a re  the same, 

e e e 

P 

(equation (1 8)) 

(equation (D2)) 

(equation (63)) 

-1 T - v = -C GeAexo 

= -C GeS8e 

-1 T - 
= -C GeSOxO 

-1 T 

for any Go. Therefore, 

-1 T -1 T C GeAe = C GeSo I 

Since = 0, it follows from equations (19),  (35), and (D6) that 
P 

Y = Q  = D .  (D11) 
P P  

Since it follows from equations (D4) and (64) that 8 = S-lSoxo, 

equation ( D l )  can be rewritten as 
e 
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Also, 
-1 * -1 

0 
S -DS-lS ] = -DS So -k DS-ISS S ad 0 0 

= D[T ds -DS-'S~) - T , S ~ ]  QD13) 
P O  

Since equation ( 0 1 0 )  holds and D(tf) = S(tf), a comparison oi equations 

(013) and (33) shows that 

P 0 1 4 1  
-1 II = (So-DS So) j) 

Using equations (D11) and (D14) in equation (61) and the fact that r = 0, 

Realization I1 of the pursuer's minimax strategy can be expressed as 
P 

u = -B -1 G T [DS +(So-DSPISo)?o] 
P P  

which agrees with the strategy obtained by Rhodes and Luenberger as 

expressed by equation (D12) i f  the S ' s  are the same in both cases, 

In the solution obtained in this report, the estimate E: 
P 

is gener- 
P 

ated by equation (55), which in this case reduces to 

- 
(D15) 

T -1 E: = G u + TeAeZo f P H R [Z -H E: 1 ;  E: ( 0 )  = x0 P P P P P  P P P  P 

From equations (D2), (DlO), and (63),  the second te rm in equation ( D l 5 )  

is just -G v, so that equation (D15) can be written as e 
- 

(DIG) 

which agrees with equation (D3) i f  P = M. But, from equation (23)  and 

the fact that Ae = 0, 

T -1 S = G  u - G e v + P H  R [Z -H E: ] ;  E: ( O ) = x 0 ,  
P P P P P  P P P  P 

P 

P = - P Q  P ; P ( 0 ) = P o ,  (D17) 
P P P P  P 

which agrees with equation (D7) for M. Therefore, the pursuit 

strategies agree. 

The demonstration is similar for the case in which the pursuer 

has no measurements. 
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